Asymptotically Stable Running for a Five-Link, Four-Actuator, Planar Bipedal Robot

نویسندگان

  • Christine Chevallereau
  • Eric R. Westervelt
  • Jessy W. Grizzle
چکیده

Provably asymptotically stable running gaits are developed for the five-link, four-actuator bipedal robot, RABBIT. A controller is designed so that the Poincaré return map associated with periodic running gaits can be computed on the basis of a model with impulse effects that, previously, had been used only for the design of walking gaits. This feedback design leads to the notion of a hybrid zero dynamics for running, which in turn allows the existence and stability of running gaits to be determined on the basis of a scalar map. The main results are illustrated via simulations performed on models with known parameters and on models with parameter uncertainty and structural changes. Animations of the resulting running motions are available on the web. KEY WORDS—biped robots, hybrid systems, hybrid zero dynamics, nonlinear control, periodic orbits, Poincaré return maps, zero dynamics

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Gait Planning and Robustness Analysis of a Biped Robot with One Degree of Underactuation

In this paper, stability analysis of walking gaits and robustness analysis are developed for a five-link and four-actuator biped robot. Stability conditions are derived by studying unactuated dynamics and using the Poincaré map associated with periodic walking gaits. A stable gait is designed by an optimization process satisfying physical constraints and stability conditions. Also, considering...

متن کامل

Design of Asymptotically Stable Walking for a 5-Link Planar Biped Walker via Optimization

Closed-loop, asymptotically stable walking motions are designed for a 5-link, planar bipedal robot model with one degree of underactuation. Parameter optimization is applied to the hybrid zero dynamics, a 1-DOF invariant subdynamics of the full robot model, in order to create asymptotically stable orbits. Tuning the dynamics of this 1 DOF subsystem via optimization is interesting because asympt...

متن کامل

Energy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking

In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...

متن کامل

Zero Dynamics of Planar Biped Walkers with One Degree of Under Actuation

The zero dynamics of a hybrid model of bipedal walking are introduced and studied for a class of N-link, planar robots with one degree of underactuation and outputs that depend only on the configuration variables. Asymptotically stable solutions of the zero dynamics correspond to asymptotically stabilizable orbits of the full hybrid model of the walker. The Poincaré map of the zero dynamics is ...

متن کامل

Towards bipedal running of a six-legged robot

This paper presents preliminary bipedal running experiments with our Robotic Hexapod, RHex. The robot and the bipedal gait are under-actuated, using only one actuated degree of freedom per compliant leg. We ‘doubled up’ the hind legs by attaching a duplicate set of hind legs at 180 degrees, forming ‘S’ shaped hind legs. This reduces the actuator speed requirements during noncontact, while prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2005